A dynamic model for the allosteric mechanism of GroEL.
نویسندگان
چکیده
GroEL-assisted protein folding is regulated by a cycle of large coordinated domain movements in the 14-subunit double-ring assembly. The transition path between the closed (unliganded) and the open (liganded) states, calculated with a targeted molecular dynamics simulation, shows the highly complex subunit displacements required for the allosteric transition. The early downward motion of the small intermediate domain induced by nucleotide binding emerges as the trigger for the larger movements of the apical and equatorial domains. The combined twisting and upward displacement of the apical domain determined for a single subunit is accommodated easily in the heptamer ring only if its opening is concerted. This is a major source of cooperative ligand binding within a ring. It suggests also that GroEL has evolved so that the motion required for heptamer cooperativity is encoded in the individual subunits. A calculated model for a di-cis 14-subunit assembly is found to be destabilized by strong steric repulsion between the equatorial domains of the two rings, the source of negative cooperativity. The simulation results, which indicate that transient interactions along the transition path are essential for GroEL function, provide a detailed structural description of the motions that are involved in the GroEL allosteric cycle.
منابع مشابه
The allosteric mechanism of the chaperonin GroEL: a dynamic analysis.
Normal mode calculations on individual subunits and a multisubunit construct are used to analyze the structural transitions that occur during the GroEL cycle. The normal modes demonstrate that the specific displacements of the domains (hinge bending, twisting) observed in the structural studies arise from the intrinsic flexibility of the subunits. The allosteric mechanism (positive cooperativit...
متن کاملDynamics of allosteric transitions in GroEL.
The chaperonin GroEL-GroES, a machine that helps proteins to fold, cycles through a number of allosteric states, the T state, with high affinity for substrate proteins, the ATP-bound R state, and the R" (GroEL-ADP-GroES) complex. Here, we use a self-organized polymer model for the GroEL allosteric states and a general structure-based technique to simulate the dynamics of allosteric transitions ...
متن کاملKinetic model for the coupling between allosteric transitions in GroEL and substrate protein folding and aggregation.
The bacterial chaperonin GroEL and the co-chaperonin GroES assist in the folding of a number of structurally unrelated substrate proteins (SPs). In the absence of chaperonins, SP folds by the kinetic partitioning mechanism (KPM), according to which a fraction of unfolded molecules reaches the native state directly, while the remaining fraction gets trapped in a potentially aggregation-prone mis...
متن کاملCrystal structure of a GroEL-ADP complex in the relaxed allosteric state at 2.7 Å resolution.
The chaperonin proteins GroEL and GroES are cellular nanomachines driven by the hydrolysis of ATP that facilitate the folding of structurally diverse substrate proteins. In response to ligand binding, the subunits of a ring cycle in a concerted manner through a series of allosteric states (T, R, and R″), enabling work to be performed on the substrate protein. Removing two salt bridges that ordi...
متن کاملThe Chaperonin ATPase Cycle: Mechanism of Allosteric Switching and Movements of Substrate-Binding Domains in GroEL
Chaperonin-assisted protein folding proceeds through cycles of ATP binding and hydrolysis by the large chaperonin GroEL, which undergoes major allosteric rearrangements. Interaction between the two back-to-back seven-membered rings of GroEL plays an important role in regulating binding and release of folding substrates and of the small chaperonin GroES. Using cryo-electron microscopy, we have o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 302 2 شماره
صفحات -
تاریخ انتشار 2000